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We experimentally demonstrate a topological transition of classical light in ‘‘photonic graphene’’:

an array of waveguides arranged in the honeycomb geometry. As the system is uniaxially strained

(compressed), the two unique Dirac points (present in the spectrum of conventional graphene) merge and

annihilate each other, and a band gap forms. As a result, edge states are created on the zigzag edge and

destroyed on the bearded edge. These results are applicable for any 2D honeycomb-type structure, from

carbon-based graphene to photonic lattices and crystals.
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The rise of the first truly two-dimensional material,
graphene, started with its discovery in 2004 [1] and has
continued as a result of its potential in electronic and opto-
electronic devices, including applications in flexible elec-
tronics [2], optical modulation [3], and metamaterials [4].
Graphene is also extremely important in the fundamental
understanding of condensed matter [5]. The reason is the
presence of two unique Dirac cones in graphene’s band
structure, leading to dynamics governed by the Dirac equa-
tion, instead of the more typical Schrödinger equation; this
causes electrons to propagate like massless relativistic fer-
mions. Indeed, a model of a graphenelike structure was used
in proposing the first topological insulator [6–8], a material
with conducting edges whose propagating edge states are
immune to disorder. This immunity has led to active re-
search into whether such edge states can remain entangled
for long times, and act as robust qubits in a quantum com-
puter [8]. The striking feature of topological physical prop-
erties is that they are not affected by small perturbations (at
any order in perturbation theory). For example, edge states
of two-dimensional topological insulators cannot backscat-
ter unless the scattering potential breaks time-reversal sym-
metry or is large enough to close the bulk gap. Graphene,
while not a topological insulator, possesses edge states that
are ‘‘topologically protected’’ only in the sense that their
presence is derived from a topological property (the Berry
phase) and cannot be destroyed by weak perturbations that
respect certain symmetries [9–11] (this should not be con-
fused with topological protection against backscattering
[7]). Indeed, in the tight-binding limit, perturbations that
respect the chiral symmetry of the structure (for example
off-diagonal disorder) do not perturb the edge state energies
[12,13]. Only for very strong perturbations can a ‘‘topologi-
cal transition’’ be observed: the Dirac points merge and a
bulk band gap is opened [14].

The dispersion properties of graphene have been
exploited in the field of photonics as well. Photonic
Dirac cones have been demonstrated experimentally [15]
and studied theoretically [15–23]. Experiments have
addressed conical diffraction [15], topological protection
of edge states in magnetically active photonic crystals [24],
enabling single photonic mode behavior over large areas
[25], pseudomagnetic behavior at optical frequencies [26],
and finally—the first experimental realization of an
external-field-free photonic topological insulator [27].
Systems exhibiting photonic Dirac cones include photonic
lattices (waveguide arrays) [15,19,20,22], and two- and
three-dimensional photonic crystals [25,28]. Edge states
that can be derived from topological arguments have also
been theoretically predicted [29,30] and demonstrated
optically in systems without Dirac cones, namely, photonic
quantum walks [31], one-dimensional dimer waveguide
arrays [32], and one-dimensional quasicrystalline wave-
guide arrays [33]. Light propagating in photonic lattices
with honeycomb geometries obeys the same equation as
electrons in graphene, namely, the Schrödinger equation
with a honeycomb potential. Therefore, such a ‘‘photonic
graphene’’ lattice emulates carbon-based graphene just as
Bose-Einstein condensates in optical lattices emulate con-
densed matter phenomena. Indeed, many of the topological
properties of graphene carry over to photonics.
In this Letter, we present theoretically and experimen-

tally a topological transition in photonic graphene. A pho-
tonic graphene lattice is compressed (or uniaxially
strained) and undergoes a transition—as a function of the
degree of compression—from an ungapped phase with two
unique Dirac points, to a phase where the Dirac points have
merged and a band gap opens [11,18]. This transition is
universal to any honeycomb-shaped potential in any
wave system, yet the compression required in observing
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this transition is beyond the applicable strain levels in
carbon-based graphene. Indeed, the presence of such
Dirac cones and their motion in the Brillouin zone is purely
a result of the honeycomb symmetry, as evidenced by
numerous other wave systems in which this graphenelike
behavior has been observed. These include of course gra-
phene itself [1], two-dimensional photonic crystals [28,34]
(which are in the extreme nonparaxial limit), ultracold
fermionic systems [35], and molecular crystals [36].
Hence, photonic graphene provides an ideal setting for
experimenting with this phenomenon. Since each of the
Dirac points in the uncompressed graphene has a Berry
phase of � and ��, respectively, they are topologically
protected against small strains or compressions that pre-
serve inversion symmetry (which the compression indeed
preserves). We experimentally demonstrate that when the
compression reaches a certain critical threshold, the states
localized on the edges undergo a transition. Namely, the
edge states associated with the so-called ‘‘bearded’’ (or
‘‘Klein’’) edge disappear when the Dirac points merge,
while conversely, the edge states associated with the ‘‘zig-
zag’’ edge then occupy the entire edge Brillouin zone. This
behavior is associated with the merging of the Dirac points
and the subsequent formation of a bulk band gap, as was
shown theoretically in Ref. [11]. Microscope images of the
input facets of the photonic lattices are shown in Fig. 1(a),
and the edge terminations are labeled.

The paraxial discrete Schrödinger equation describes the
diffraction of light through a photonic lattice [37,38]:

i@zc nðzÞ ¼
X
hmi

cðjrn;mjÞc mðzÞ � Hm;nc m: (1)

Here, z is the distance of propagation; c n is the amplitude
of the guided mode in the nth waveguide; cðjrm;njÞ is the
coupling constant between waveguides m and n when they
are placed a distance jrm;nj apart from one another;H is the

Hamiltonian matrix; and the summation is taken over only
the nearest neighbor waveguides. The validity of this equa-
tion for describing the system used in this Letter has been
established previously [38,39]. Note that this equation is
equivalent to a tight-binding model of electrons in a lattice,
where the z coordinate takes the place of the time coor-
dinate of electron evolution. Thus as light diffracts through
the lattice, it behaves analogously to electrons evolving in
time in the solid state.
The waveguide array is arranged in a honeycomb

lattice, as shown in Fig. 1(a). We fabricate six samples,
with an increasing degree of compression in the vertical
direction [Fig. 1(b) shows the sample with the greatest
compression]. The vertical coupling constant, c1, increases
more rapidly with compression than the diagonal coupling
constant, c2 [see inset of Fig. 1(a)]. While the waveguides
have an elliptic shape, this has little effect on the results. In
the honeycomb lattice, the Hamiltonian may be repre-
sented as HðkÞ ¼ hðkÞ � �, where

hðkÞ ¼
�
c1 þ 2c2 cos

�
kx
2

�
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� ffiffiffi
3

p
ky
2

�
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where HðkÞ is the Hamiltonian represented in lattice
momentum [k ¼ ðkx; kyÞ] space and � ¼ ð�x; �yÞ is a

two-dimensional vector of the x and y Pauli matrices.
Diagonalization results in the band structure diagrams
shown in Figs. 2(a) and 2(b), for the cases of the uncom-
pressed honeycomb lattice (c1 ¼ c2) and the highly com-
pressed lattice (c1 ¼ 2:5c2). Note that the meaning of the
eigenvalue of the Hamiltonian is the wave number in the z
direction (also known as the propagation constant), or
�ðkÞ. In the uncompressed case, the band structure exhibits
Dirac cones (conical intersections of the two bands), two of
which are inequivalent (all others are separated by a recip-
rocal lattice vector from the principal two). When the

FIG. 1. Microscope images of the input facets of the
uncompressed, s ¼ 1:0 (a) and strongly compressed, s ¼ 0:5
(b) honeycomb waveguide array. Inset to (a) shows the vertical
coupling constant c1 and diagonal coupling constant c2.

FIG. 2 (color online). Spatial band structure of the
(a) uncompressed and (b) compressed honeycomb photonic
lattice. The black arrows in (a) indicate the direction that the
Dirac points move when the system is compressed.
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lattice is compressed, the Dirac cones approach each other
[as indicated by the black arrows in Fig. 2(a)] [14,20].
When the compression is such that c1 ¼ 2c2, the cones
merge, and a band gap is opened for c1 > 2c2 [20].

The presence of edge states can be analytically derived
from the ‘‘bulk-edge correspondence’’ [10,11,40–42] via a
calculation involving the Berry phase (or ‘‘Zak phase
[43]’’)—a topological property of the band structure. The
Berry phase is

� ¼ i
I

dk � h�kjrkj�ki; (3)

where the integral is over a closed loop in k space, and j�ki
is an eigenstate of the Hamiltonian at Bloch wave vector k.

The eigenstate can be expressed as j�ki ¼ ð1; ei�kÞ= ffiffiffi
2

p
,

where �k is a real phase that is a function of k. It can be
shown [43] that � is a topological invariant of a lattice
system—i.e., that small changes in the nature of the shape
of the loop cannot change the value of �. Moreover,
specifically in the honeycomb lattice � ¼ w�, w being
the winding number of the vector field hðkÞ. Note that the
angle that hðkÞ makes with the positive hx axis is exactly
�k, and Eq. (3) amounts to integrating �k=2 along the given
integration path. Thus, if along the path through k space
the vector hðkÞ makes a complete loop, then � ¼ ��,
otherwise, � ¼ 0. Furthermore, small compressions of
the lattice do not change these values. In Fig. 3(a), we
represent this calculation pictorially, with the Dirac points
indicated by black dots. The path taken by the integral
follows the green and red vertical lines, and the arrows
represent the direction of the vector hðkÞ. Even though the
integration paths are vertical, they are in fact closed loops
because the Brillouin zone is periodic, and thus the path
effectively closes. The diagram is shown for the bearded
edge termination, when it is repeated in the x direction
but is terminated in the y direction. The bulk-edge

correspondence theorem states that if � ¼ �, there will
be an edge state at the value of kx corresponding to the
vertical line, whereas if � ¼ 0, there will not. It is clear
from the arrows in Fig. 3(a) that, in the shaded region, the
vector hðkÞ makes a complete loop and thus there are
bearded edge states at these values of kx, whereas in the
unshaded regions there are not. The zigzag edge contains
states for values of kx for which the bearded edge contains
none (unshaded regions), and does not contain edge states
for which the bearded edge does (shaded regions).
As the lattice is compressed, the Dirac points get closer

to one another in pairs, then merge and open a band gap
when c1 ¼ 2c2 [20]. Until they merge, they are topologi-
cally protected against opening a band gap due to the Berry
phase associated with circular loops around them (see
Supplemental Material [44] Sec. 1 for more details on
the nature of the topological protection of the Dirac
points). Figure 3(b) shows an equivalent plot to that of
Fig. 3(a), but for supercritical compression (c1 ¼ 2:5c2).
Here, the Dirac points have merged, eliminating the
bearded edge state [i.e., the shaded region of Fig. 3(a)].
Conversely, the zigzag edge then occupies the entire edge
Brillouin zone (i.e., all values of kx). The diagram equiva-
lent to Fig. 3, but for the zigzag edge, is shown in Sec. 2 of
the Supplemental Material [44]. To confirm the presence
(and absence) of the edge states on the bearded and zigzag
edges, we compute the edge band structures for a number
of different values of the compression, s. This is done by
choosing a unit cell that is periodic in the x direction, but
which is terminated with either the bearded or zigzag edges
in the y direction. The result of this calculation (which uses
the full Schrödinger equation with laboratory parameters)
is discussed in Sec. 3 of the Supplemental Material [44].
In our experiments, the honeycomb waveguide array is

written using the femtosecond-direct-laser-writing tech-
nique [39], in fused silica. The waveguides are elliptical
in shape, with horizontal and vertical diameters of 11 and
3 �m, respectively. The index of refraction of the ambient
silica is 1.45, and the change of index associated with the
waveguides is 6� 10�4. The spacing between waveguides

is 22 �m, making the lattice constant a ¼ 22� ffiffiffi
3

p
�m.

To probewhere the edge state resides as a function of kx, we
perform ‘‘spatial spectroscopy’’ on the edge. An elliptical
beam of light (at wavelength 633 nm, from a helium-neon
laser) is launched at the input facet, such that it is localized
at the edge, but is broad in the direction parallel to the edge.
The broadness of the beam in the x direction implies that it is
narrow in kx space and thus excites states in a narrow line
width around kx. The elliptical beam is tilted horizontally in
order to tune the value of kx, thus applying a linear phase
gradient in the x direction. The precise details of the ex-
perimental setup are described in detail in Ref. [45].
Next, we present the numerical and experimental results

associated with edge confinement, starting first with the
bearded edge [the top of the waveguide array depicted in

FIG. 3 (color online). Schematic of Berry’s phase calculation
demonstrating the values of kx for which a bearded edge state
exists, via the bulk-edge correspondence theorem, for both
(a) the uncompressed (s ¼ 1), and (b) strongly compressed
(s ¼ 0:5) cases. The arrows point in the direction of the vector
hðkÞ. In (a), the black dots indicate the Dirac points, and the
arrows indicate the direction they move upon compression.
Bearded edge states are present in the shaded regions of (a),
and are not present in (b).
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Fig. 1(a)]. The numerical results are obtained using the
beam propagation method, in which the continuous
Schrödinger equation is evolved in ‘‘time’’ (in propagation
distance, z) in a finite honeycomb array. Figures 4(a) and 4(b)
show (experiment and simulation, respectively) the ratio of
optical power remaining on the edge at the output facet
(within the first two rows of waveguides) relative to the
power diffracted into the bulk, plotted as a function of
Bloch wave number, kx, within the edge Brillouin zone.
Indeed, simply by tuning the incident angle of the input
beam, we can directly probe the presence or absence of an
edge state as a function of Bloch momentum. Here, we let s
denote the degree of compression in the vertical direction:
if the height of the perfect honeycomb lattice is h, then the
height of the compressed lattice is sh. Results are presented
for arrays compressed in the vertical direction by a factor of
s ¼ 0:5, 0.6, 0.7, 0.8, 0.9, and 1.0, yielding coupling con-
stant ratios of c1=c2 ¼ 3:6, 2.6, 1.9, 1.5, 1.1, and 0.9,
respectively. Note that the ratio of the vertical coupling,
c1, to the diagonal coupling, c2, is at its greatest when the
lattice is at itsmost compressed (s ¼ 0:5). For s ¼ 1:0, there
is strong confinement surrounding kx ¼ 0, indicating an
edge state. This is the edge state derived in the discussion
surrounding Fig. 3. The strong edge confinement near kx ¼
�=a is due to the presence of another, nontopological edge
state that has been presented elsewhere [45]. The results in
Fig. 4 show that with increasing compression, there is lower
power on the edge, as well as a narrower region in kx space
forwhich power is confined. This corresponds directly to the
destruction of the bearded edge state demonstrated in Fig. 3.
The fraction of power remaining on the edge also decreases
as a result of the further penetration of the edge states into the
bulk with increasing compression. In the top left and top
right insets of Fig. 4(a) we show the output facet for kx ¼ 0
and s ¼ 1 (where there is an edge state), and kx ¼ 0 and
s ¼ 0:5 (where there is none), respectively. Thewhite ellipse
indicates the position of the input beam. In the former, light
is confined to the edge due to the presence of the edge state,
and in the latter case it diffracts into the bulk due to the lack
thereof. Thus, we observe the destruction of the bearded
edge state as a result of the merging of the Dirac points.

Numerical and experimental results for the zigzag edge
are shown in Figs. 5(a) and 5(b), respectively. This figure is
the equivalent of Fig. 4, but for the zigzag edge. Recall that
the zigzag edge exhibits edge states at exactly those values
of kx for which the bearded does not. As the system is
compressed, zigzag edge states thus occupy all values of
kx. The diagram showing the existence of a zigzag edge
state is shown in the Supplemental Material [44]. Thus, just
as the edge state was destroyed on the bearded edge, it is
created on the zigzag edge. Light emerging from the output
facets of the waveguide arrays are shown in the top left and
top right insets of Fig. 5(a) for kx ¼ 0 with s ¼ 1 (where
there is no edge state), and s ¼ 0:5 (where there is an edge
state), respectively. Clearly, no edge confinement is
observed in the former case, and strong edge confinement
is observed in the latter.
In summary, we have demonstrated the destruction of

graphenelike edge states on the bearded edge of a honey-
comb photonic lattice, together with the simultaneous
creation of edge states on the zigzag edge. This result
derives from a topological mechanism in which Dirac
points merge and annihilate one another as a result of
compression. Topological systems are heralded for being
impervious to small perturbations; this result is a prime
example of how a large perturbation can tune between one
topological phase and another. For example, topological
transitions of the type presented would most probably
occur also in Kagome lattices, which are constructed
from a three-member basis.
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